全球数字财富领导者
财富汇
|
美股投研
|
客户端
|
旧版
|
北美站
|
FX168 全球视野 中文财经
首页
资讯
速递
行情
日历
数据
社区
视频
直播
点评旗舰店
商品
SFFE2030
外汇开户
登录 / 注册
搜 索
综合
行情
速递
日历
话题
168人气号
文章
调查称印度员工43%的时间在做表面功夫,韩国与美国持平
go
lg
...
,但不是做真正有成效的工作。 这是根据
Salesforce
子公司Slack和研究公司Qualtrics进行的一项新的全球调查得出的结论,该调查收集了包括高管在内的1.8万多名办公室工作人员提供的数据。 Slack亚太地区的“技术专员”德里克·兰尼(Derek Laney)表示,所谓“表面功夫”的工作包括“花大量时间在‘团队展示成果’的会议上,而不是做决定或解决问题。” 调查显示,印度、日本和新加坡员工在生产性工作或“实际工作”上花费的时间比例最低,分别只有57%、63%和64%。换句话说,他们在“表面功夫”上花费的时间比例分别为43%、37%和36%。 法国员工排名第四,有31%的时间在假装忙碌。英国员工为30%,澳大利亚和德国并列,为29%,韩国员工和美国员工并列,为28%。 Slack的德里克·兰尼表示,员工之所以在意自己表现得很忙,“很可能是受到了领导者衡量效率的方式的影响”。 兰尼说:“领导者最有可能根据看得见的活动来判断工作效率,而不是关注取得的成果。” “这种脱节导致员工试图在领导面前表现良好,从而浪费了精力。” 报告显示,在全球范围内,可见度和活动指标,如上网时间或发送电子邮件的数量,被列为领导者衡量生产力的首要方式(27%)。 这反过来会使员工感到压力,不得不延长工作时间,立即回复电子邮件,或者列席每次会议。 例如,44%的新加坡员工(全球最高)表示,他们在会议和电子邮件上花费“太多时间”影响了他们的工作效率。 Slack发现,63%的受访者会努力保持自己的在线状态,即使他们不工作。 接受调查的员工最希望通过关键绩效指标而不是活动指标来评估自己的工作,包括与经理的对话;以及“花在特定类型工作上的时间”。
lg
...
金融界
2023-08-16
索罗斯在削减了一些大型云软件公司的持股的同时,增持了人工智能芯片制造商英伟达和AMD的股票
go
lg
...
阻止。” 与此同时,索罗斯还清仓了他在
Salesforce
Inc.的全部17万股持股和在Snowflake Inc.的3.85万股持股。 索罗斯还将他在网络安全公司Cloudflare Inc.的持股比例增加了200%,达到60万股;将他在Okta Inc.的持股比例增加了94%,达到97.1万股;将他在Rapid7 Inc.的持股比例增加了105%,达到820万股。 索罗斯还将他在Amazon.com Inc.的持股比例增加了8.9%,达到超过76.9万股,同时削减了他在沃尔玛(Walmart Inc.)的持股。在基金方面,索罗斯还减持了在Netflix Inc.和高盛集团(Goldman Sachs Group Inc.)的持仓。
lg
...
Heidi
2023-08-12
索罗斯二季度清仓赛富时和奈飞等 增持并重仓亚马逊和谷歌
go
lg
...
先锋自然资源等23只股票;清仓赛富时(
Salesforce.com
)、iShares罗素2000 ETF、奈飞、京东等37只股票或ETF;增持亚马逊、谷歌A、Rivian等20只股票;减持SPDR标普地区银行ETF、高通等20只股票或ETF;重仓资产包括谷歌A和亚马逊。
lg
...
金融界
2023-08-12
远程办公或将成过去式!连Zoom都让员工返回办公室工作!
go
lg
...
势汹涌。 近几个月来,谷歌、亚马逊和
Salesforce
也颁布了类似的政策,结束了大流行时代给予员工更多在家工作自由的做法。然而,在员工习惯了在家办公的灵活模式后,企业也面临着员工的一些阻力。 甚至白宫也在打击远程工作。据美国有线电视新闻网(CNN)获得的一封内部电子邮件显示,上周,它要求内阁机构在未来几个月内更频繁地让联邦工作人员重返办公室。 白宫办公厅主任杰夫-齐恩特斯(Jeff Zients)的指令引用了政府过去两年的亲自出席态度,白宫认为在关键的大选即将到来之际,到现场办公对各机构执行其议程至关重要。 Zoom公司股价今年上涨了约 4%。然而, 在大流行病引发的需求激增之后,Zoom公司也遇到了自己的困难。 今年2月,Zoom 因发展过快而裁员约15%,员工总数约为1300人。高管领导团队成员还将下一财年的基本工资减少了20%,并放弃了2023财年的奖金。 与大多数公司相比,Zoom 的视频会议服务在大流行病的早期就已成为一种标志,因为许多人在封锁期间都求助于它的平台与朋友和同事进行视频聊天。到 2020 年中期,Zoom报告称,由于许多公司被迫转向远程办公,公司客户激增,导致公司收入猛增。 大家认为在家办公好还是混合办公好呢? 作者:珩宝
lg
...
超级爆料君
2023-08-10
成立2年 每名员工价值2100万美元 MosaicML凭什么卖出13亿美元?
go
lg
...
域掀起了一股投资收购热潮。全球知名企业
Salesforce
向Anthropic注资4.5亿美元,而Runway则成功筹集到了1.41亿美元的资金。此外,雪花公司也宣布完成了对Neeva的收购,而中国国内巨头美团则以20.65亿收购了AI公司光年之外。 然而,最引人瞩目的交易无疑是初创公司MosaicML的收购案。据了解,MosaicML以约13亿美元的价格被大数据巨头Databricks收购,其估值在本次交易中翻了六倍,成为了今年上半年最大的收购案。仅成立2年时间,拥有60多名员工,是什么撑起了MosaicML的高估值? Databricks收购MosaicML,加速生成式AI技术民主化 Databricks近期正式宣布,以约13亿美元(约93亿元人民币)收购生成式人工智能初创公司MosaicML,以提供为企业构建类ChatGPT工具的服务。 该收购之后,MosaicML 将成为 Databricks Lakehouse 平台的一部分,MosaicML 的整个团队和技术都将纳入Databricks旗下,为企业提供统一的平台来管理数据资产,并且能够使用自己的专有数据来构建、拥有和保护自己的生成式 AI 模型。 MosaicML是一家非常年轻的生成式AI公司,它于2021年成立于旧金山,目前只公开披露过一轮融资,员工仅62人。在上一轮的融资中,其估值为2.2亿美元,也就是说,此次收购MosaicML的估值直接跃升了6倍。此笔交易是截至目前今年生成式AI领域内所公布的最大一笔收购案。就在不久前,云计算巨头Snowflake刚刚宣布收购了另一家生成式AI公司Neeva。在经历了几个月的投资热之后,大型企业对生成式AI初创公司的大规模并购潮似乎正在开启。 Databricks起源于UC伯克利,曾参与Apache Spark项目开发。作为数据存储和分析巨头,截至2022年估值310亿美元,帮助AT&T、壳牌、Walgreens等大型公司处理数据。前段时间,刚开源了自己大模型Dolly,旨在以更少参数实现与ChatGPT类似的效果。而在云计算更加普及后,Spark提出的“湖仓一体”理念,深深影响了一批大数据初创企业。自2013年成立后,Databricks火速成长为全球最火的Data Infra公司。去年,Databricks公布的年收入超过10亿美元,而在2021年8月完成最新一轮融资后,其最新估值达到380亿美金。 MosaicML MPT系列模型的优势 MosaicML的MPT系列模型是从HuggingFace PretrainedModel基类中子类化的,与HuggingFace生态系统完全兼容。MPT-7B模型是MosaicML最受欢迎的模型之一,拥有数十亿个参数,可以处理超过2,000种自然语言处理任务。其中,MPT-7B的优化层包括FlashAttention和低精度层范数等,可以让该模型比传统训练方法快2-7倍,资源的近线性可伸缩性确保了具有数十亿参数的模型可以在几小时内训练,而不是过去的几天。MosaicML还发布了新的可商用的开源大语言模型MPT-30B,拥有300亿参数,并且性能优于GPT-3。 数据来源:MT-Bench对MosaicML主流模型进行的评估 MPT系列模型的优势在于它们的高效性和低成本。使用大量数据进行“训练”的人工智能模型的复杂度急剧上升,训练一个模型现在至少要花费数百万美元,除了大公司之外,其他中小型企业普遍都无法承受。而MosaicML的MPT系列模型可以让企业以更低的成本和更高的效率训练自己的语言模型,从而可以更轻松地应用生成式AI技术,实现更好的业务表现。大多数开源语言模型只能处理最多具有几千个tokens的序列(参见图 1)。但是,借助 MosaicML 平台和 8xA100-40GB 的单个节点,用户可以轻松微调 MPT-7B 以处理高达 65k 的上下文长度。处理这种极端上下文长度适应的能力来自ALiBi,这是MPT-7B中的关键架构选择之一。 例如,《了不起的盖茨比》的全文不到68k个Token。在一个测试中,模型StoryWriter阅读了《了不起的盖茨比》并生成了一个尾声。模型生成的尾声之一如图 2 所示。StoryWriter在大约20秒内(每分钟约15万字)读完了《了不起的盖茨比》。由于序列长度较长,其“打字”速度比其他MPT-7B型号慢,每分钟约105个单词。尽管 StoryWriter 的上下文长度为 65k 进行了微调,但 ALiBi 使模型能够推断出比训练更长的输入:在《了不起的盖茨比》的情况下为 68k 个Token,在测试中高达 84k 个标记。 图2:MPT-7B-StoryWriter-65k+ 为《了不起的盖茨比》写了尾声。尾声的结果是提供《了不起的盖茨比》的全文(大约 68k 个Token)作为模型的输入,后跟“尾声”一词,并允许模型继续生成。 生成式AI技术的普及 生成式AI技术是人工智能的一种分支,它利用大量的数据和深度学习算法,能够自动生成原始文本、图像和计算机代码等内容。这种技术的出现,让人们可以更加便捷地处理数据、分析数据,更好地服务于人类的需求。随着大数据和人工智能技术的快速发展,生成式AI技术已经被广泛应用于自然语言处理、图像识别和虚拟现实等领域。例如,在自然语言处理领域中,GPT-4已经成为了最受欢迎的生成式AI模型之一,可以用于生成文章、翻译语言和回答问题等任务。在图像识别领域,StyleGAN2能够生成高质量的图像,可以用于游戏开发、影视制作和虚拟现实等领域。 MosaicML的CEO Naveen Rao此前曾表示,自 2018 年以来,使用大量数据进行“训练”的人工智能模型的复杂度急剧上升,训练一个模型现在至少要花费数百万美元,除了大公司之外,其他中小型企业普遍都无法承受。而此次收购之后,Databricks的Lakehouse 平台和 MosaicML 技术的联合产品将能够让企业可以使用自己的专有数据来简单、快速、低成本进行生成式AI模型的训练和构建,在让用户拥有数据的控制权和所有权的情况下,可以进行自定义 AI 模型开发。根据Databricks的相关说法,在 Databricks 和 MosaicML的平台和技术支持下,企业训练和使用 LLMs 的成本将显著降低,预计可以降至数千美元左右。这为生成式AI的普及提供了便利。 Databricks收购MosaicML的意义 Databricks收购MosaicML的主要目的是加速生成式AI技术的发展和民主化。通过将两家公司的技术和资源整合起来,Databricks可以更好地满足客户的需求,提供更高效、更便捷的解决方案。具体而言,该收购将带来以下几个方面的改变: 1. 更高效的大语言模型 Databricks收购MosaicML后,可以将MPT系列模型集成到其Lakehouse平台中,为客户提供更高效、更低成本的大语言模型。这将有助于企业更好地处理自然语言处理任务,提高业务效率和准确性。 2.更快的模型训练速度 MosaicML的MPT系列模型具有快速训练的特点,这将有助于Databricks提供更快速的模型训练服务。这对于需要快速响应市场需求的企业来说尤为重要,可以帮助他们更好地满足客户的需求。 3. 更高的民主化程度 Databricks收购MosaicML也意味着生成式AI技术的民主化程度将会进一步提高。MosaicML的MPT系列模型可以让中小型企业更轻松地训练自己的语言模型,从而可以更好地应用生成式AI技术,实现更好的业务表现。这将有助于推动生成式AI技术的发展和应用,促进人工智能技术的普及和发展。 总结 生成式人工智能应用程序旨在根据用户的自然语言提示生成原始文本、图像和计算机代码。自去年11月人工智能初创公司OpenAI推出在线生成AI聊天机器人ChatGPT以来,人们对这项技术的兴趣激增。“每个组织都应该能够从人工智能革命中受益,并对其数据的使用方式有更多的控制。Databricks 和 MosaicML 有一个难以置信的机会来实现人工智能的民主化,并使 Lakehouse 成为构建生成式人工智能的最佳场所。”Databricks 联合创始人兼首席执行官 Ali Ghodsi表示。 Databricks收购MosaicML的意义不仅在于加速生成式AI技术的发展和民主化,更在于将两家公司的技术和资源整合起来,为客户提供更高效、更便捷的解决方案。随着人工智能技术的快速发展和应用,生成式AI技术将扮演着越来越重要的角色,Databricks收购MosaicML的举动也体现了各企业对于这个方向的重视和投资。像Anthropic和OpenAI这样的公司将现成的语言模型授权给企业,然后企业在其上构建生成AI应用程序。在对这些模型的强劲商业需求的推动下,为像MosaicML这样的初创公司创造了机会。从Snowflake和Databricks接连的收购步伐中我们可以看到,大型科技公司对于生成式AI技术正在从自主研发、战略投资逐步迈向兼并收购阶段。 参考来源: https://www.databricks.com/company/newsroom/press-releases/databricks-signs-definitive-agreement-acquire-mosaicml-leading-generative-ai-platform https://mattturck.com/mosaic/ https://twitter.com/lmsysorg/status/1672077353533730817/photo/1 https://www.mosaicml.com/blog/mpt-7b#appendix-eval https://www.mosaicml.com/blog/mpt-30b 来源:金色财经
lg
...
金色财经
2023-08-06
成立2年每名员工价值2100万美元 MosaicML凭什么卖出13亿美元?
go
lg
...
域掀起了一股投资收购热潮。全球知名企业
Salesforce
向Anthropic注资4.5亿美元,而Runway则成功筹集到了1.41亿美元的资金。此外,雪花公司也宣布完成了对Neeva的收购,而中国国内巨头美团则以20.65亿收购了AI公司光年之外。 然而,最引人瞩目的交易无疑是初创公司MosaicML的收购案。据了解,MosaicML以约13亿美元的价格被大数据巨头Databricks收购,其估值在本次交易中翻了六倍,成为了今年上半年最大的收购案。仅成立2年时间,拥有60多名员工,是什么撑起了MosaicML的高估值? Databricks收购MosaicML,加速生成式AI技术民主化 Databricks近期正式宣布,以约13亿美元(约93亿元人民币)收购生成式人工智能初创公司MosaicML,以提供为企业构建类ChatGPT工具的服务。 该收购之后,MosaicML 将成为 Databricks Lakehouse 平台的一部分,MosaicML 的整个团队和技术都将纳入Databricks旗下,为企业提供统一的平台来管理数据资产,并且能够使用自己的专有数据来构建、拥有和保护自己的生成式 AI 模型。 MosaicML是一家非常年轻的生成式AI公司,它于2021年成立于旧金山,目前只公开披露过一轮融资,员工仅62人。在上一轮的融资中,其估值为2.2亿美元,也就是说,此次收购MosaicML的估值直接跃升了6倍。此笔交易是截至目前今年生成式AI领域内所公布的最大一笔收购案。就在不久前,云计算巨头Snowflake刚刚宣布收购了另一家生成式AI公司Neeva。在经历了几个月的投资热之后,大型企业对生成式AI初创公司的大规模并购潮似乎正在开启。 Databricks起源于UC伯克利,曾参与Apache Spark项目开发。作为数据存储和分析巨头,截至2022年估值310亿美元,帮助AT&T、壳牌、Walgreens等大型公司处理数据。前段时间,刚开源了自己大模型Dolly,旨在以更少参数实现与ChatGPT类似的效果。而在云计算更加普及后,Spark提出的“湖仓一体”理念,深深影响了一批大数据初创企业。自2013年成立后,Databricks火速成长为全球最火的Data Infra公司。去年,Databricks公布的年收入超过10亿美元,而在2021年8月完成最新一轮融资后,其最新估值达到380亿美金。 MosaicML MPT系列模型的优势 MosaicML的MPT系列模型是从HuggingFace PretrainedModel基类中子类化的,与HuggingFace生态系统完全兼容。MPT-7B模型是MosaicML最受欢迎的模型之一,拥有数十亿个参数,可以处理超过2,000种自然语言处理任务。其中,MPT-7B的优化层包括FlashAttention和低精度层范数等,可以让该模型比传统训练方法快2-7倍,资源的近线性可伸缩性确保了具有数十亿参数的模型可以在几小时内训练,而不是过去的几天。MosaicML还发布了新的可商用的开源大语言模型MPT-30B,拥有300亿参数,并且性能优于GPT-3。 数据来源:MT-Bench对MosaicML主流模型进行的评估 MPT系列模型的优势在于它们的高效性和低成本。使用大量数据进行“训练”的人工智能模型的复杂度急剧上升,训练一个模型现在至少要花费数百万美元,除了大公司之外,其他中小型企业普遍都无法承受。而MosaicML的MPT系列模型可以让企业以更低的成本和更高的效率训练自己的语言模型,从而可以更轻松地应用生成式AI技术,实现更好的业务表现。大多数开源语言模型只能处理最多具有几千个tokens的序列(参见图 1)。但是,借助 MosaicML 平台和 8xA100-40GB 的单个节点,用户可以轻松微调 MPT-7B 以处理高达 65k 的上下文长度。处理这种极端上下文长度适应的能力来自ALiBi,这是MPT-7B中的关键架构选择之一。 例如,《了不起的盖茨比》的全文不到68k个Token。在一个测试中,模型StoryWriter阅读了《了不起的盖茨比》并生成了一个尾声。模型生成的尾声之一如图 2 所示。StoryWriter在大约20秒内(每分钟约15万字)读完了《了不起的盖茨比》。由于序列长度较长,其“打字”速度比其他MPT-7B型号慢,每分钟约105个单词。尽管 StoryWriter 的上下文长度为 65k 进行了微调,但 ALiBi 使模型能够推断出比训练更长的输入:在《了不起的盖茨比》的情况下为 68k 个Token,在测试中高达 84k 个标记。 图2:MPT-7B-StoryWriter-65k+ 为《了不起的盖茨比》写了尾声。尾声的结果是提供《了不起的盖茨比》的全文(大约 68k 个Token)作为模型的输入,后跟“尾声”一词,并允许模型继续生成。 生成式AI技术的普及 生成式AI技术是人工智能的一种分支,它利用大量的数据和深度学习算法,能够自动生成原始文本、图像和计算机代码等内容。这种技术的出现,让人们可以更加便捷地处理数据、分析数据,更好地服务于人类的需求。随着大数据和人工智能技术的快速发展,生成式AI技术已经被广泛应用于自然语言处理、图像识别和虚拟现实等领域。例如,在自然语言处理领域中,GPT-4已经成为了最受欢迎的生成式AI模型之一,可以用于生成文章、翻译语言和回答问题等任务。在图像识别领域,StyleGAN2能够生成高质量的图像,可以用于游戏开发、影视制作和虚拟现实等领域。 MosaicML的CEO Naveen Rao此前曾表示,自 2018 年以来,使用大量数据进行“训练”的人工智能模型的复杂度急剧上升,训练一个模型现在至少要花费数百万美元,除了大公司之外,其他中小型企业普遍都无法承受。而此次收购之后,Databricks的Lakehouse 平台和 MosaicML 技术的联合产品将能够让企业可以使用自己的专有数据来简单、快速、低成本进行生成式AI模型的训练和构建,在让用户拥有数据的控制权和所有权的情况下,可以进行自定义 AI 模型开发。根据Databricks的相关说法,在 Databricks 和 MosaicML的平台和技术支持下,企业训练和使用 LLMs 的成本将显著降低,预计可以降至数千美元左右。这为生成式AI的普及提供了便利。 Databricks收购MosaicML的意义 Databricks收购MosaicML的主要目的是加速生成式AI技术的发展和民主化。通过将两家公司的技术和资源整合起来,Databricks可以更好地满足客户的需求,提供更高效、更便捷的解决方案。具体而言,该收购将带来以下几个方面的改变: 1. 更高效的大语言模型 Databricks收购MosaicML后,可以将MPT系列模型集成到其Lakehouse平台中,为客户提供更高效、更低成本的大语言模型。这将有助于企业更好地处理自然语言处理任务,提高业务效率和准确性。 2.更快的模型训练速度 MosaicML的MPT系列模型具有快速训练的特点,这将有助于Databricks提供更快速的模型训练服务。这对于需要快速响应市场需求的企业来说尤为重要,可以帮助他们更好地满足客户的需求。 3. 更高的民主化程度 Databricks收购MosaicML也意味着生成式AI技术的民主化程度将会进一步提高。MosaicML的MPT系列模型可以让中小型企业更轻松地训练自己的语言模型,从而可以更好地应用生成式AI技术,实现更好的业务表现。这将有助于推动生成式AI技术的发展和应用,促进人工智能技术的普及和发展。 总结 生成式人工智能应用程序旨在根据用户的自然语言提示生成原始文本、图像和计算机代码。自去年11月人工智能初创公司OpenAI推出在线生成AI聊天机器人ChatGPT以来,人们对这项技术的兴趣激增。“每个组织都应该能够从人工智能革命中受益,并对其数据的使用方式有更多的控制。Databricks 和 MosaicML 有一个难以置信的机会来实现人工智能的民主化,并使 Lakehouse 成为构建生成式人工智能的最佳场所。”Databricks 联合创始人兼首席执行官 Ali Ghodsi表示。 Databricks收购MosaicML的意义不仅在于加速生成式AI技术的发展和民主化,更在于将两家公司的技术和资源整合起来,为客户提供更高效、更便捷的解决方案。随着人工智能技术的快速发展和应用,生成式AI技术将扮演着越来越重要的角色,Databricks收购MosaicML的举动也体现了各企业对于这个方向的重视和投资。像Anthropic和OpenAI这样的公司将现成的语言模型授权给企业,然后企业在其上构建生成AI应用程序。在对这些模型的强劲商业需求的推动下,为像MosaicML这样的初创公司创造了机会。从Snowflake和Databricks接连的收购步伐中我们可以看到,大型科技公司对于生成式AI技术正在从自主研发、战略投资逐步迈向兼并收购阶段。 参考来源: https://www.databricks.com/company/newsroom/press-releases/databricks-signs-definitive-agreement-acquire-mosaicml-leading-generative-ai-platform https://mattturck.com/mosaic/ https://twitter.com/lmsysorg/status/1672077353533730817/photo/1 https://www.mosaicml.com/blog/mpt-7b#appendix-eval https://www.mosaicml.com/blog/mpt-30b 来源:金色财经
lg
...
金色财经
2023-08-04
马斯克称“X”有望成美国人日常用语一部分
go
lg
...
方方面面,成为人们日常用语的一部分。
Salesforce
联合创始人兼CEO马克·贝尼奥夫(Marc Benioff)发帖询问:“我们现在该怎么说?‘你看到那条推特了吗?我发推了!’还是‘你看到那个X了吗?我X了!’替一个朋友问。” 一位用户回应称:“X不再只是发推特了。因此,我们不能仅仅将发布行为与产品名称联系起来。它正在向支付、流媒体视频、即时通讯等领域发展——这是一场全新的游戏。坦率地说,与WhatsApp和iMessage相比,我很高兴看到它的不同定位。” 马斯克加入了这场互动,他写道:“完全正确。如果成功,X将以我们还不知道的方式进入方言。‘在X上看到’,‘在X上发布’,‘在X上付款’,‘喝醉了给X女友发短信’,等等。”
lg
...
金融界
2023-08-02
生产力 SaaS 如何应对 AI 的颠覆?
go
lg
...
大的价值主张,但并不是我们第一反应的“
Salesforce
上留存了大量的 CRM 数据、Zoom 上有大量的潜在会议记录,可以拿来训练一个强大的模型”。恰恰相反,保证不在未授权情况下使用客户数据训练模型或者替客户进行任务自动化是这类公司最重要的价值主张之一,也是把数据玩出花的第一个角度 —— 营造信任。 对于大型企业客户来说,GenAI 的确可能成为生产力神器,但同时也是一个难以被信任的新科技,需要那些擅长面向大型企业客户提供保证隐私、安全性的 SaaS 供应商帮助 GenAI 跨越这一鸿沟。 最近一提信任和隐私,「开源 + 本地部署」成为了一种无脑的答案。在这种显而易见的做法之上,在云上交付隐私和安全是能够服务大型企业客户的 SaaS 们在过去 10 年积累的基本功。以 Slack 的一个细节为例 —— 为了将客户群从 SMB 和 Mid-Market 拓展到大型企业,它花血本将标准的数据加密方案做了更复杂的定制,通过跟 AWS 的 Key Management Service 做集成,让客户控制 Key,Slack 再通过服务调用客户设置的 Key 来加密用户的数据。这种等级的“安全可控”在微软系生产力工具中也非常常见。 「不碰客户数据」是营造信任的基线,在用例同质化的情况下,为 GenAI 定制的隐私及数据安全解决方案则有机会成为一个具有差异化的价值主张。微软虽然在这一点上积累很深,但是对外没有猛打这一卖点。反而
Salesforce
的 Einstein GPT 使用这一价值主张更多,在 3 月宣布 Einstein GPT 后,近期最大的进展就是 Trust Layer 的推出,试图将自己是「最可以被信任」的 GenAI Offering 这一形象打透。 第二个角度:不碰版权数据 Adobe Firefly 在 4 个月前刚刚放出时遭遇群嘲,它生成的皮卡丘和 Hello Kitty 们惨不忍睹。但是现在 Firefly 已经在 Web 版本和 Photoshop 中帮助 Adobe 的用户们生成了超过 10 亿个资产,被公司评价为“Adobe 历史上最成功的两个测试版本产品”。 外界在过去几个月已经逐渐领会了 Firefly 的独特价值主张:对未经授权的版权内容保持敬畏,帮助自己产品的使用者免除商用这些生成资产的法务风险。这一价值主张的核心就是构建一个完全没有版权问题的数据集。Stability AI 和 Midjourney 继续保持着对 Firefly 在效果上的微弱领先,但是不可避免地遭遇集体诉讼,因为它们使用的 LAION 数据集上包含 56 亿未经许可从公网上抓取的图像。 第三个角度:帮客户把数据连起来 使用 LLM 的数据处理环节 Source : a16z 有无数创业公司在这一赛道,就不再赘述最典型的数据连接用例。在此之上,跨本地和云的数据整合能力是一个需要长期积累的基本功,现有 SaaS 巨头有些差异化优势 —— 它们经历了 On-Prem 转云处理存量数据的尴尬期,经验比较丰富,而且
Salesforce
收购了 Mulesoft,Google 有 Apigee,微软有 Power Platform,都有各种强大的 Connectors 来帮助客户收集跨组织和跨本地与云的数据。 通过将自身的云、数据连接器、产品场景垂直整合,再搭配合作伙伴的 LLM,老牌 SaaS 能够提供给客户一个真正端到端的堆栈,先收集好数据,再协调好数据并且能够创建数据的相关 pipeline,让数据在不同的模型和场景中可用。目前这一价值主张驱动的销售效果还未可知,但是起码听起来很美妙。 上文介绍了 3 种把数据玩出花的角度,但目的都不是让 GenAI 的能力更强大,而是让它真正达到 Business Class 和 Enterprise Ready。 借机重振产品品牌 GenAI 既能实际落地发挥作用,又是完美的营销帮手: • EinsteinGPT 重新让
Salesforce
的爱因斯坦小人 Logo 获得关注。要知道在此之前
Salesforce
这个 Einstein 的 AI 品牌并不算成功,一直没有绝对领先市场的产品,反而是 Gong.io 这样的初创公司一路崛起,成为 Conversation Intelligence 方向的头部玩家; • 微软在 Bing 和流程挖掘的产品上也类似,Bing 和 Google 在搜索体验上仍然有相当大的差距,而从微软收购的 Minit 而来的 Power Automate Processing Mining 也跟 Celonis 等独立的头部玩家有差距,但是通过 Bing Chat 和 Copilot,都重新面向潜在客户收获了一波关注; 在微软的 Power Automate Processing Mining 中 使用 Copilot • Zoom IQ 在 Conversation Intelligence 这个赛道上起步晚,但是凭借跟 GenAI 的集成,快准狠地推出了跟其他 Zoom 生产力场景的协同,也获得了在客户面前更多的曝光和关注; 使用 Zoom IQ 生成和回复邮件 • UiPath 和 Five9 这些被视作长期潜在受损的公司也非常积极地进行 GenAI 整合,让广泛地产品线显得更智能; …… 尽管这些策略帮助以外缺乏突破点的产品再次获得关注,但这个窗口期可能正在关闭。随着微软各个产品中的 Copilot 和其他公司的 GenAI 集成从 Private Beta 走向正式版本交付客户使用,GenAI Offering 的作用将从「让销售 leads 增多」变为「提升 win rate」。 扩 TAM 保毛利 当不确定的经济环境和宏观局势遇到了共识打满的 GenAI,我们看到二级市场的公司试图做出“All in AI”的姿态,不断强调这是新的工业革命或者 PC 出现的时刻,但是在实际的经营策略上则仍然试图在利用 GenAI 扩大 TAM 的同时尽量保毛利。 微软和 Google 等少数深入模型层的公司略微例外,它们在保毛利的同时做好了扩大 CapEx 投入的准备。 在广大的 SaaS 公司里,Zoom 这样的思考和策略算是现阶段的标配,即 GenAI Offering 不能赔本赚吆喝,得让客户直接付费或是升级其付费计划: AI 对毛利率的影响较小。对于更高级和更高端的用例,我们希望通过让客户升级其订阅计划或通过我们平台的消费模式向客户收费。所以总的来说,我们正在努力抵消任何潜在(影响毛利)的压力。我们对长期毛利率的提高非常有信心。 Eric Yuan - Zoom 在定价模式上,除了有 M365 Copilot、Zoom IQ for Sales、
Salesforce
的一系列 AI 产品按坐席和用量单独收费,跟付费订阅捆绑成为了非常流行的定价方式: 在保毛利的同时探索出来一个让客户普遍接受的定价是一件非常有挑战性的事情,大量产品仍处于 Private Beta,探索定价方式中。在云时代充 credits 的 pay-as-you-go 模式崛起,GenAI 能不能推动某种新型的定价策略出现也非常值得期待。 02.「海外独角兽」们寻找安身立命之本 超强执行力的中间桥梁 对于生产力 SaaS 们的前途命运,有两类观点: • GUI 将毫无价值,这些 SaaS 最终将只提供数据库价值; • GenAI 是法拉利级别的引擎,但是你总归需要一辆完整的汽车。 站在现实的角度,第一种观点在短期内还很难实现,许多人甚至认为 LUI 可能是最差的 UI,让我们重新倒退回了命令行时代。当然也还没有一家 SaaS 独角兽甘愿迎接第一种命运,因此大家仍然在尝试为用户提供一辆更完善的汽车。 在这一点上 Notion、ClickUp、Miro 等公司的尝试和 M365、Google Workspace 没有什么本质上的不同。但是第一季度在 Bing 和 M365 几乎霸占了市场注意力的势头的情况下,Notion 在 22 年底很早就关注到 OpenAI 的动向,成为非 AI Native 的生产力 SaaS 公司中第一个上线完整 AI 产品的玩家,并且收获了还不错的市场反馈,很快就创造了数百万美元的 ARR。 使用 Notion AI 总结梳理一篇研究文献 我们交流的一些 Notion 员工将 Notion AI 定位成一个双向的桥梁 —— Notion AI 封装好的指令帮助用户减少了收集和搭配 Prompt 的门槛,而 GenAI 本身降低了用户使用 Notion 各种复杂组建的门槛。 生产力赛道下的另一位卷王 ClickUp 跟 Notion 的这个解题思路很类似,它的产品比 Notion 还要复杂,嵌入了白板、视频等其他场景。在 Atlassian、Asana、Monday.com 等二级市场的对手都还没有 GenAI Offering 面世的时候,ClickUp 就推出了自己的 AI 产品并且确定了只有 Notion 一般的定价策略,很快也产生了可观的 ARR。 使用 ClickUp 的 AI 功能进行任务管理 靠开源武装自己 有一些生产力 SaaS 光做好中间桥梁的作用可能不够,因为它们的安身立命技术被 LLM 直接挑战 —— 比较典型的两个例子是 Gong.io 的对话分析和 Sourcegraph 的代码搜索,它们都通过与传统 ML 模型构建了技术护城河,但是现在这些护城河被 LLM 撕开了巨大的口子。 Sourcegraph 背后的 3 大技术 Gong 的应对比较中规中矩,在第一季度没有什么反应。根据我们和早期投资人的交流,部分原因可能是团队认为模型能力并不是决胜点,获得和处理客户会议及对话数据的能力是个需要时间积累的脏活累活。直到 6 月初,Gong 才宣布推出 Call Spotlight 以及 Proprietary Generative AI Models。 可能是 ChatGPT 和 Github Copilot 处理代码的能力过于惊人,Sourcegraph 成为了过去两个季度在应对 GenAI 冲击时非常让人眼前一亮的公司。尽管 Sourcegraph 很早就意识到 LLM 的 Context Window 在处理多个大型库级别的代码量上仍然有缺陷,但是没有停止产品创新,在 3 月末就直面竞争,推出了由 Anthropic 的模型驱动的代码编辑助手 Cody,并且将其代码实现开源。 Cody 背后的技术方案 由于 Cody 拥有 Embeddings 的长上下文优势和 Sourcegraph 独特的 Code Graph 加持,它很快在 Hacker News 和 Twitter 上被广泛讨论。而开源的属性让 Cody 不被局限在 Sourcegraph 产品内部,而是可以当做灵活的 IDE Extension 使用,作为老公司和 AI Native 的 Cursor 等产品一同迅速成为了 Github Copilot 最可能的替代选项之一。 乘胜追击扩大价值 我们在 ChatGPT Plugin 的文章中描述过 Zapier 短期受益的局面: 当前 ChatGPT 有了很强的工具使用能力,但缺少在 api 聚合方面的 know-how,因此 Plugin 的出现在中短期之内利好 Zapier 这类聚合器产品。Zapier 在此领域积累很深,现在如果大家想在 ChatGPT 上做一些复杂操作的时候:比如将文本总结之后发社交媒体,或是记录在 Google Workspace 中,大家都会选择用 ChatGPT + Zapier 的方式来实现。在很多 use case 中,ChatGPT 只需要接入聚合器,就能做到非常好的用户体验,它也不需要接入大量 api,相当于类似 SEO 的部分由聚合器完全提供了。 …… 但长期上,这类产品面临以下冲击:一方面, api 的组织形式可能会发生变化,LLM 时代可能跨产品交互的频次和。OpenAI 最近发布了函数调用能力,使 api 的可用性显著提升,这些变化可能会弱化 Zapier 的护城河。另一方面,聚合器可能会成为操作系统机会中的一部分,微软、谷歌和苹果都可能基于自己的系统去建立相应的能力,竞争激烈。 Zapier 团队在过去 6 个月的表现非常亮眼,展现出了团队一流的视野和执行力。下面这几个产品发布可谓稳准狠: • 3 月推出 Zapier Natural Language Actions,将平台能力首次以 API 的方式开放,还支持通过 Chat 的方式调用,迅速让 Zapier 跟 GenAI 生态融合在一起; • 由于各种 SaaS 内的数据只是由 Zapier 连接而没有存储在它这里,Zapier 在 5 月推出了 Zapier Tables,帮助用户存储、编辑、共享和自动化各个 SaaS 内的数据,这样可以从用户存量数据积累的角度构建另一条护城河; • 它推出的 Chatbot 框架也迅速在社交媒体上引发大量关注,成为用户自发为各类 SaaS 引入 LUI 的首选低成本方案之一。 从不浪费红利、防止短暂红利过后被颠覆以及扎实把产品做好的角度,Zapier 是这一年来最好的生产力 SaaS 范本。而且它的联合创始人 Mike Knoop 投入力度非常大,完全致力于 Zapier 与 AI 相关的产品,并且成为了湾区 AI 生态重要的意见领袖,非常值得其他生产力 SaaS 公司学习。 03.现阶段 SaaS 的 AI 功能遭遇的 5 大挑战 尽管我们找到了 6 个正面范本试图说明有些生产力 SaaS 做得还不错,但是它们不可避免地仍然陷入到一些具体的挑战当中,下面是最典型的 5 个: 挑战 1:PR 先行给用户带来的失落 由于 ChatGPT 引发的用户热度过于突然,大量的公司在 23 年初才开始准备其 AI Offering,并且在 3 月中下旬撞车式发布 Private Beta 版本,这导致了过长的 Waitlist,大量的客户知道自己的 SaaS 供应商推出了 AI 能力,但是却一直无法购买使用,不得不随着时间冷静下来。 以 CRM 为例,许多
Salesforce
的客户对 Einstein GPT 非常感兴趣,多次向自己的销售询问报价,但是在整个 4 月和 5 月都无法得到售卖反馈,这让许多客户将这种本该严肃的产品发布视作一场无意义的 PR 行为。
Salesforce
实际上拥有一份完善的产品路线图,但是与官宣 Einstein GPT 的时间有足足 3 个月的时间差 挑战 2:AI 与产品路线图的冲突 投资人们希望 AI 颠覆 SaaS,但是大量的 SaaS 用户实际上只想安安静静地用好自己的文档、任务管理、视频会议工具们。 ClickUp 的用户们对 ClickUp 3.0 的正式推出期待已经,但是先等到 ClickUp AI,因此有一些非常一针见血的用户吐槽: ClickUp 的核心是充当项目管理工具和数据库,但是核心功能充满 bug,有些仪表盘需要几分钟才能刷新,可靠性在过去 18 个月号称占据了 70% 的资源但是几乎没有新功能出现,3.0 跳票,ClickUp Docs 的基础能力和 Google Docs 相距甚远,AI 本身无济于事。 ClickUp 试图让 AI 看起来是产品升级中的一个子项,但是大家发现他们的首要任务是 AI 而不是 3.0。 ClickUp 选择发布 AI 而不是 3.0 让人感觉受到了欺骗,3.0 不再是“指日可待”,我宁愿再看一下 Asana 或 Wrike。 其他的产品或多或少都有类似的问题存在,比如 Notion 离线模式的用户呼声可能比 Notion AI 要强不少,这样大家才能摆脱在没有 WiFi 时完全无法使用 Notion 的窘境,但是 Notion AI 率先推出并且在产品路线图中似乎占据了更多精力。 挑战 3:用户承担的定价模式 这与挑战 2 相辅相成:如果 AI 能力是免费赠送的,那用户并没有什么反感这些能力的理由。但是由于“扩 TAM 并且保毛利”的策略,用户往往需要额外付费。 不管是 ClickUp 的 5 美元 / 月 / 人、Notion 的 10 美元 / 月 / 人还是 M365 的 30 美元 / 月 / 人,让每个使用者自行付费的话不是个大数目,但是真让经营者批量采购也不是笔小钱 —— 要知道 Notion 本身的 Business 方案也就 15 美元 / 月 / 人,为员工采购 AI 相当于账单需要增加 60-70%。 挑战 4:跟 ChatGPT 抢入口 这些挑战是环环相连的! 由于挑战 1 的存在,大量习惯了 ChatGPT 的用户的工作流是将文本粘帖进 ChatGPT 问答,然后将所需的结果再复制会自己的 SaaS 当中, 由于挑战 2-3 的存在,尽管难以衡量具体比例,但是大量的用户已经订阅了 ChatGPT Plus,承担了 20 美元月 / 人的账单。这个订阅虽然略贵,但是比较通用,为每个 SaaS 的 AI Offering 单独订阅的总额可能远远超越 20 美元。 因此我们团队经常讨论的入口逻辑在实实在在地发生,生产力 SaaS 们正在和 ChatGPT Plus 争夺每个员工身上的预算,这个战争暂时还胜负未分。 挑战 5:并没有「天才」CEO 我们在去美国之前认为
Salesforce
的 Data Cloud 战略为其 GenAI 的路线图提供了自上而下的指引,但是和内部员工聊下来发现这也只是非常 high level 的指导思想,最终还是回归到营销云、服务云、工业云等各个业务团队内部自下而上提出各类 GenAI 产品功能的诉求。 其实走访下来,从大公司到一级市场独角兽,大家进行 AI 创新的方式大抵都是如此,不存在 CEO 想出一个天才的方向,然后下面闷头实现就行的情况。不同玩家之间的核心区别之一在于 CEO 愿意为这部分分配的总资源有多少。鉴于挑战 2 的存在和 AGI 带来时间表的不确定性,这可能很难平衡,并且成为未来 5 年所有 SaaS CEO 最需要思考的问题之一。 来源:金色财经
lg
...
金色财经
2023-08-02
马斯克称“X”有望成为美国人日常用语一部分
go
lg
...
方方面面,成为人们日常用语的一部分。
Salesforce
联合创始人兼CEO马克·贝尼奥夫询问:“我们现在该怎么说?‘你看到那条推特了吗?我发推了!’还是‘你看到那个X了吗?我X了!’” 一位用户回应称:“X不再只是发推特了……它正在向支付、流媒体视频、即时通讯等领域发展,这是一场全新的游戏。” 马斯克回复写道:“完全正确。如果成功,X将以我们还不知道的方式融入口语中。‘在X上看到’,‘在X上发布’,‘在X上付款’,‘喝醉了给X女友发短信’,等等。” 此前,马斯克在推特上解释了把推特标志换成“X”的原因。他表示,此举是为了将推特重塑为一个广泛的通信和金融交易平台,他将这个目标描述为“万能应用程序”。
lg
...
金融界
2023-08-02
金色Web3.0日报 | FTX已提交重组计划 拟重启离岸交易所以弥补客户亏损
go
lg
...
Master Card、Reddit、
Salesforce
等品牌的一系列交易。 DeFi热点 1.Coinbase:SEC未要求Coinbase下架任何资产 8月1日消息,Coinbase一位发言人表示,SEC未要求Coinbase下架任何资产,金融时报此前对此报道不准确。该发言人表示,在诉讼之前,美国证券交易委员会在任何时候都没有要求 Coinbase 摘牌任何特定资产,美国证券交易委员会在同一篇文章中也承认了这一点。 2.Curve Finance:最好迁移到Vyper 0.3.7+最新版本合约 金色财经报道,Curve Finance在社交媒体提醒称,Vyper 0.3.7+已进行了较好的重构和审核,虽然不涉及任何保证(也没有任何保证),但最好迁移到最新版本合约。此前,截至目前,Curve Finance官方已确认四个流动性池受到Vyper编译器0.2.15-0.30版本影响,分别是:crv/eth、aleth/eth、mseth/eth、peth/eth,另外Arbitrum上tricrypto的一个流动性池“可能”受到影响,审计员和Vyper开发人员仍无法找到漏洞,因此需要投资者尽快退出。 3.Volatility Shares计划推出以太坊期货ETF 金色财经报道,Volatility Shares计划推出一款以太坊期货ETF产品,拟议的以太坊策略ETF将投资于在芝加哥商品交易所(CME)交易的以现金结算的以太期货合约,不会直接投资以太坊(ETH)。 此前,Grayscale Investments、Bitwise 等公司在SEC要求后放弃了5月份推出以太坊期货ETF的计划。行业参与者将对以太坊期货流动性水平的担忧以及以太坊是证券还是商品的不确定性视为潜在原因。 4.美联邦法官允许Terraform Labs向FTX就做空Terra/Luna发出传票 金色财经报道,美国联邦法官John Dorsey允许Terraform Labs向FTX就做空Terra/Luna发出传票,Terraform 坚称 FTX 拥有与其针对SEC执法行动进行辩护的相关信息。 该公司辩称,其Terra/Luna代币的做空导致了2022年5月的崩盘,而FTX拥有信息和相关文件。 据报道,Dorsey 为Terraform Labs提供了特别许可,迫使目前已破产的交易平台FTX提供与Terraform论点相关的文件和信息。FTX 的律师(同时也是 FTX US 的代表)也同意了该命令,FTX 将提供所要求的记录,只要这些记录仅限于 Terraform 针对 SEC 案件的辩护。 5.MakerDAO联创:Curve漏洞可能是牛市前的最后一次崩盘 金色财经报道,MakerDAO联合创始人Rune Christensen发布推文称,周末Curve Finance的漏洞引发了整个去中心化金融领域的广泛担忧,这可能对行业有好处。他写道:“这似乎是一个感叹‘结束了’的时刻,但也许只是这个周期的黑色星期四,即牛市前的最后一次崩盘,一切都会以一百倍强劲的方式回归”。 金色财经曾报道,由于使用Vyper编码语言版本的智能合约中的错误,DeFi协议Curve Finance的多个流动性池被利用。由于重入漏洞,攻击者使用Vyper合约耗尽了多个稳定币池,2400万美元的资金被提取。 AI热点 1.Meta将推出具有个性的AI聊天机器人 金色财经报道,Facebook和Instagram的母公司Meta计划发布具有类人性格的人工智能聊天机器人。知情人士表示,聊天机器人的原型已经在开发中,最终产品能够与用户进行人类层面的讨论。这一系列的聊天机器人将能够展示不同的个性,预计最早将于下个月发布。该公司已经开发了一款像美国前总统亚伯拉罕·林肯一样说话的机器人,以及一款像冲浪者一样说话的旅行建议机器人。 2.OpenAI向美国专利局提交“GPT-5”商标申请 金色财经报道,美国商标律师Josh Gerben在社交平台发文称,OpenAI已于7月18日向美国专利商标局(USPTO)提交“GPT-5”商标申请。商标申请信息显示,GPT-5提供离线/在线版本“人工生成语音和文本的计算机软件”;以及离线/在线版本“自然语言处理、生成、理解和分析的计算机软件”。 免责声明:金色财经作为区块链资讯平台,所发布的文章内容仅供信息参考,不作为实际投资建议。请大家树立正确投资理念,务必提高风险意识。 来源:金色财经
lg
...
金色财经
2023-08-01
上一页
1
•••
37
38
39
40
41
•••
57
下一页
24小时热点
中美突发重磅!中国暂停针对美国稀土出口限制 暂停对美企的贸易和投资禁令
lg
...
特朗普一句话、油价暴跌近4%!全球狂欢宿醉后等待风暴,今日不止鲍威尔
lg
...
真正的黑天鹅要来了?比特币脱钩无预警结束 以太坊突发“万亿美元”重大计划
lg
...
【直击亚市】中国暂停对稀土出口限制!小心市场涨过头了,黄金大跳水失守3150
lg
...
中美大消息引发金价暴跌!知名机构:黄金技术面重大破位 盯住这些重要支撑和阻力
lg
...
最新话题
更多
#Web3项目情报站#
lg
...
6讨论
#SFFE2030--FX168“可持续发展金融企业”评选#
lg
...
32讨论
#链上风云#
lg
...
101讨论
#VIP会员尊享#
lg
...
1956讨论
#CES 2025国际消费电子展#
lg
...
21讨论